
Supplementary Material
( Gravitational Approach for Point Set Registration)

Vladislav Golyanik1,2

vladislav.golyanik@dfki.de

Sk Aziz Ali1

saali@rhrk.uni-kl.de

Didier Stricker1,2

didier.stricker@dfki.de

1 University of Kaiserslautern, Germany
2 German Research Center for Artificial Intelligence (DFKI), Germany

Further details on the Gravitational Approach going be-
yond the scope of the main matter are given in this supple-
mentary material. Specifically, we provide:

A A proof of the Proposition 1
B Details on the rigorous rotation resolving
C Scale resolving through divergence of the force field
D Reasoning of the GPE expression in Eq. (17)
E An additional experiment on SLAM datasets
F A remark on the Gravitational Search Algorithm

All references to expressions from the main matter are given
directly by the corresponding numbers (e.g. 8). References
to the expressions introduced in the appendix are preceded
by a chapter literal (e.g. C.1).

A. Proof of the Proposition 1
Proof. Eq. (14) has no exact solution, unless Ŷt+1 lies in
the column space of Ŷt. Nevertheless, we can solve

Υt+1 = Ŷts, (A.1)

where Υt+1 is a projection of Ŷt+1 to the column space of
Ŷt by normal equations. After rewriting Eq. (A.1) in terms
of the known variables we obtain:

s = (ŶT
t Ŷt)

−1ŶT
t Ŷt+1 =

ŶT
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ŶT
t Ŷt

(A.2)

which corresponds to the optimal in the least squares sense
solution to scaling.

B. Rigorous rotation resolving
A torque is always defined relative to a reference point

(2D) or an axis (in three and higher dimensions). From Eu-
ler’s rotation theorem (1776) follows: in three and higher
dimensions, rotation of a rigid body about a fixed point in-
side the body is equivalent to the rotation about some axis
passing through this point [4].

Having determined a torque, it is possible to compute a ro-
tation angle around a reference point/axis and convert it to
the corresponding rotation matrix. This procedure consists
of several steps (see Fig. I): 1) determining the axis of rota-
tion ~aY ; 2) computing the moment of inertia Iy around the
axis; 3) determining the angular acceleration α; 4) obtain-
ing the angular velocity ω; 5) updating the rotation angle
ϕ around the axis ~aY , whereupon the rotation matrix R is
inferred. The sequence of steps 1) - 5) is repeated in every
iteration.

Figure I: Rotation of a rigid body in 3D can be unambiguously represented
by an axis of rotation aY and an angle ϕ around the axis. An external
force ~F (directed towards the observer) causes a torque with the moment of
inertia Iy inducing angular acceleration α. From the angular acceleration
and the current angular velocity ~ω, an update for rotation angle ϕ through
forward integration is computed.

Noticeably, a gravitational field is a conservative force
field. This implies that it cannot by itself cause any rota-
tional effects, i.e

∇× ~F = 0, (B.1)

where ∇× denotes curl operator. If a rigid body at rest is
placed into a static gravitational field, it will start acceler-
ate; the potential energy will transform to the kinetic energy
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(and vice versa), but the body will not start to spin. In other
words, without external forces the point of rotation will co-
incide with the center of gravity — a point with the result-
ing zero torque. Through introducing an external force the
point of rotation changes and the resulting torque becomes
non-zero — in this case rotation occurs. Thus, point of ro-
tation is set to the template’s center of mass in the current
formulation of GA. In an inhomogeneous vector field the
center of gravity of a rigid body either with a constant or
varying density does not coincide with the center of mass
and a torque emerges. This torque is used in GA to resolve
rotation. Indeed, the Kabsch algorithm resolves rotation rel-
atively to the center of mass. The center of mass is fixed,
which is only possible through an external force. Since the
center of mass and the center of gravity do not coincide, as
a result a torque emerges.
To determine the axis of rotation, the following observation
can be made. If a body rotates around a fixed point/axis,
rotation causes each point of the rigid body to displace de-
pending on the distance of this point to the center/axis of
rotation. The displacement vector lies in the plane per-
pendicular to the axis of rotation and passing through the
point’s position vector. Conversely, in our case point dis-
placements D are available and the axis of rotation has to
be determined. Considering starting and final position vec-
tors of a point Yi, the axis of rotation can be estimated as

~aY i = ~rY i × (~rY i + ~di). (B.2)

Accounting for all the points, we strengthen the estimate
and resolve the axis of rotation of the rigid system of parti-
cles as a mean vector of individual estimates:

~aY =

∑
i ~aY i

M
. (B.3)

For this rigid body, the moment of inertia IY around the
axis reads:

IY =

M∑
j

mY j |rY i|2~aY
, (B.4)

where |rY i|~aY
denotes distance of a point rY i to the axis of

rotation ~aY . Respectively, torque around the axis ~aY reads:

τ =

M∑
j=1

|rY i|~aY
× ~FY i. (B.5)

Finally, it is possible to compute an angular acceleration α
of the system of particles Y using the relation between a
torque and a moment of inertia as

α =
τ

IY
. (B.6)

Performing forward integration in the similar manner as in
the case of an unconstrained translational motion (Eqs. (7),
(8)), the angular velocity ωY and the rotation angle ϕY can
be obtained. The latter together with the axis of rotation
forms an axis-angle representation and uniquely determines
the rotation matrix R in every iteration.

C. Scale resolving through divergence of the
force field

Figure II: (a): an example of a central vector field −x̂i − yĵ and (b): the
function relating divergence of a central vector field with the scaling factor
s of an influenced rigid system of particles.

Scaling can be resolved considering divergence of the
central force field component ~U of the displacement field
D. We refer to the central force field component as a curl-
free component of the vector field, so that

~U = ax̂i + ayĵ + azk̂, (C.1)

where a is a constant. Ultimately, it is possible to relate
∇ · ~U and scaling. Fig. II shows an example of a central
vector field and the function relating divergence of a central
vector field and the scaling factor of a rigid system of par-
ticles placed into it. The relation s(∇ · ~U) is linear. When
∇ · ~U = 0, there is no dilatational component in the vector
field and the scaling is 1. If ∇ · ~U = 2, the force field will
tend to place every point twice as far from the origin of the
coordinate system per unit of time. This corresponds to a
twofold scaling. In the case of ∇ · ~U = −1, every coordi-
nate is halved which corresponds to the scaling value of 0.5.
Divergence −2 implies that wherever the point is located, it
is translated to the origin of the coordinate system. This cor-
responds to an immediate shrinkage of a point set to a single
point. Values less than −2 would shrink and cause reflec-
tion of a point set. For other divergence values the linear re-
lation holds likewise. Finding ~U requires Helmholtz vector
field decomposition with extraction of the central force field
component from the curl-free component. For more details
on the Helmholtz decomposition an interested reader may
refer to [1].



Figure III: Depth maps involved in the experiment: (a) selected frames from the copyroom dataset [8]; (b) selected frames from the electrical cabinet
dataset [7]; the contrast of the depth maps is enhanced for better perceptibility; corresponding frame numbers are given in the top left corners of the images.

D. Gravitational Potential Energy

Between two bodies of masses m1 and m2 the gravita-
tional potential energy (GPE) Up emerges:

Up = −Gm1m2

r
, (D.1)

where G is the gravitational constant and r is the distance
between centers of mass of the bodies. Accordingly, the en-
ergy function for two interacting rigid systems of particles
can be defined as

E(R, t, s, ε) = −G
M∑
i

N∑
j

mY i mXj

‖R cY i s + t− cXj‖+ ε
.

(D.2)

At a local minimizer (Ropt, topt, sopt) the total GPE of the
system and the value of the energy function E are locally
minimal. Thus, it is possible to express the GA stopping
criterion by a difference of GPEs in several consecutive it-
erations.
Note that direct minimization of the energy function in
Eq. (D.2) is not trivial. For instance, applying a non-linear
optimization algorithm such as Levenberg-Marquardt [5]
with quaternion parametrization of rotations is problematic
due to instability. Nevertheless, it might be possible to em-
ploy a genetic algorithm to optimize it.

E. An experiment on SLAM datasets

In this section, we describe an additional experiment on
real-world data. We use point clouds from two RGB-D
datasets, i.e. the Stanford 3D Scene Dataset [8] (captured
by a pattern projection sensor) and CoRBS [7] (captured by
a time-of-flight camera). These datasets are primarily de-
signed to benchmark SLAM methods. One of the goals of
SLAM is to reconstruct a scene given multiple depth maps
(which can be unambiguously converted into point clouds)
and color images captured by an RGB-D sensor such as
Kinect. An RGB-D sensor outputs RGB images as well as
depth maps for discrete moments of time.
The course of the experiment is equal for both datasets. The
difference concerns resolution of the depth maps and, as a
consequence, the number of points in the point clouds. In
Fig. III depth maps involved in the experiments are shown.
Every depth map corresponds to a frame in a recorded
RGB-D sequence. The resolutions of the depth maps are
640× 480 and 512× 424 pixels for the copyroom (from the
Stanford Scene Dataset) and the electrical cabinet dataset
(from CoRBS) respectively. The depth maps are converted
to the corresponding point clouds using the parameters pro-
vided by the authors of the datasets, i.e. intrinsic camera pa-
rameters and scaling factors for the depth maps. In Fig. IV,
several examples of point clouds are shown.

For the registration we choose several frame combina-
tions with different frame intervals between references and
templates. If a frame interval is reasonably large, rigid reg-



Figure IV: Selected point clouds converted from the depth maps corresponding to the frames form the Stanford 3D Scene Dataset (a)-(c) and CoRBS (d)-(f).

istration can become challenging because of clustered out-
liers, missing parts, effects of the depth sensor distortion
and noise presented in both point sets. The goal of the ex-
periment is to demonstrate that GA can potentially be used
in a SLAM system to register point clouds. Therefore, we
compare cloud-to-cloud distances between point clouds on
the initialization step and after the registration is finished.
Thus, we can qualitatively observe if GA can improve the
template’s pose based at least on a single criterion.

For several challenging frame pairs, rigid registration
with GA is performed. Point clouds contain ≈ 2.67 · 105

and ≈ 2 · 105 points for the Stanford 3D Scene Dataset
and CoRBS respectively. All point clouds are subsampled
so that every of them contains 2000 points. The algorithm
converges at the latest after 100 iterations when oscillations
attenuate. The runtime per iteration amounts to ≈ 0.5 sec.
G = 1.27 · 10−4 for the Stanford 3D Scene Dataset and
G = 8.27 · 10−4 for CoRBS is set. In all experiments,
η = 0.2, ε = 0.1 are set and the scaling is fixed, since the
point clouds do not differ in scale significantly in this exper-
iment. Note that the color information presented in the color
images is not used — all points are of equal masses. This
makes the scenario more challenging for GA. Color infor-
mation provided by the RGB images can be used to assign
different point weights both in a reference and in a template,
similar to the Orion experiment (see Fig. 5, Sec. 4).

In Fig. V, results on the Stanford 3D Scene Dataset are

summarized. In the first column (Fig. V-a), initializations
are shown — the point clouds are taken directly after con-
version from the depth maps. The references are shown in
cyan and the templates are shown in orange. On the left,
frame numbers of the reference frames (cyan) and the tem-
plate frames (orange) are provided. The second column
(Fig. V-b) contains color-coded cloud-to-cloud distances
between the templates and references. In the third col-
umn (Fig. V-c), the GA registration results and, similarly, in
the fourth column (Fig. V-d) the corresponding color-coded
cloud-to-cloud distances between the registered templates
and references are provided. Analogously to the Stanford
3D Scene Dataset, the results on the CoRBS Dataset are
summarized in Fig. VI. Note that every cloud-to-cloud dis-
tance plot evinces the same color saturation for a given data
set. This simplifies the visual comparability of the results.

In all attempts, GA is able to significantly improve
cloud-to-cloud distances between the point clouds. This
demonstrates robustness of GA against the typical real-
world point cloud artefacts occurring in different combina-
tions. Thus, the experiment shows that GA may potentially
be used in challenging real-world scenarios such as scene
completion for SLAM. Accordingly, an accelerated GA will
be tested in the SLAM scenario in future work. Moreover,
additional information such as initial velocity and colors
will be used in future experiments.



Figure V: Results of the experiment on the Stanford 3D Datasets [8]: (a) initial misalignments (initialization); references are shown in cyan and templates
in orange; on the left, corresponding frame numbers are provided (in cyan for the reference frames and in orange for the template frames). (b) cloud-to-
cloud distance corresponding to the initial misalignment; (c) GA registration results; (d) cloud-to-cloud distance corresponding to the registration result;
cloud-to-cloud distances are coded with a Blue<Green<Yellow<Red color scale; the saturation point (red value) amounts to 0.08 distance units.

F. A remark on the Gravitational Search Algo-
rithm

An optimization algorithm known as Gravitational
Search Algorithm (GSA) [6] was once applied to opti-
mize the ICP objective function [3]. Despite the distantly
similar denotation, our formulation has nothing in com-

mon with GSA. GSA is a general purpose heuristic multi-
agent optimization algorithm belonging to the class of evo-
lutionary algorithms. Noticeably, it has more discrepancies
with gravitational motion than similarities: positions of the
agents are initialized randomly, masses are altered based on
the fitness of the agents, velocity updates occur randomly
and the distances between solutions are not taken into ac-



Figure VI: Results of the experiment on the CoRBS dataset [7]: (a) initial misalignments (initialization); (b) cloud-to-cloud distance corresponding to the
initial misalignment; references are shown in cyan and templates in orange; on the left, corresponding frame numbers are provided (in cyan for the reference
frames and in orange for the template frames). (c) GA registration results; (d) cloud-to-cloud distance corresponding to the registration result; cloud-to-cloud
distances are coded with a Blue<Green<Yellow<Red color scale; the saturation point (red value) amounts to 0.1 distance units.

count (the latter revealed in [2]). Other characteristic is that
an optimal solution is represented by a position of one par-
ticular agent in the solution space.
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