
— Supplementary Material —
RPSRNet: End-to-End Trainable Rigid Point Set Registration Network using

Barnes-Hut 2D-Tree Representation

Sk Aziz Ali1,2 Kerem Kahraman1 Gerd Reis2 Didier Stricker1,2
1TU Kaiserslautern 2German Research Center for Artificial Intelligence (DFKI GmbH), Kaiserslautern

This supplementary document summarizes several rele-
vant details for deeper understanding about our RPSRNet
in three main Secs. 1, 2 and 3. The Sec. 1 lists down the
parameter settings and training protocols of all benchmark
methods alongside our proposed RPSRNet. We also show
the effects of different batch size and scaled loss learning
on the prediction accuracy of the network. The next Sec. 2
gives insights to our BH 2D-tree convolution operation us-
ing linearized node-indexing. In the end, Sec. 3 provides
more insightful results and evaluation of our method on
ModelNet40 [12] and KITTI [5] datasets.

1. Evaluation Method and Training Details.

We train the registration networks of DCP [10], PR-
Net [11], and PointNetLK [1] methods all from scratch (w/o
using their pre-trained models) following standard training
protocols from the respective studies. Both DCP and its
extended version PRNet, and PointNetLK take 250 epochs
to train the network with a learning rate of 10−3 and us-
ing ADAM optimizer. During experiments, we find that
PRNet has inherent issues of ill-conditioned feature em-
bedding matrix computations which causes random crashes
during training. Hence, we do not evaluate PRNet. While
a batch size 10 is set for the DCP, PointNetLK is trained
with batch size 32 and internal alignment iterations 10. The
optimal hyper-parameters for our RPSRNet are – required
number of epochs: 250, batch size: 16 (see the reason in
Sec. 1.1), learning rate: 0.0001, loss dissipation factor (β):
0.2, rotational/translational scale (σR/σt): -5.0 / -2.5 for
KITTI dataset and -9.0 / -10.0 for ModelNet40 dataset, and
a dropout: 0.2. On the other hand, the maximum number of
iterations for all the unsupervised iterative alignment meth-
ods ICP [3], CPD [7], FilterReg [4], FGR [13], and GA [6],
is set to 200. The mean µ = 0.0 and Gaussian spread
σ = 0.05 are set for FilterReg and CPD (data-based au-
tomatic initialization of σ is also possible). FGR method
uses Fast Point Feature Histogram (FPFH) [9, 8] descriptor
of the input source and target point clouds and use them in
their global optimization step to estimate rigid transforma-

tion. Hence, it takes a search radius to localize descriptor
space for every point. We set the search-radius parameter
to 0.15. To evaluate the GA, we set its astrophysical param-
eter settings as – Gravitational constant (G): 6.67 · 10−3,
force softening length (ε): 0.05, time step (∆t): 0.05, and
energy dissipation rate: 0.3.

1.1. Importance of Batch-Size and Scaled Loss

On KITTI [5] and ModelNet40 [12] Datasets
Batch
Sizes

SLL
1

(K2-w)
ϕrmse, ∆trmse

(K1-w/o)
ϕrmse, ∆trmse

(M1-seen)
ϕrmse, ∆trmse

(M2-unseen)
ϕrmse, ∆trmse

8 7 1.4394, 2.19 1.481, 1.53 5.82 , 0.04452 5.878, 0.0468
X 0.9747, 0.87 0.9234, 0.84 4.3111, 0.0221 4.667, 0.0281

16 7 1.5823 , 2.24 1.4645, 1.39 6.1468 , 0.0472 6.2004, 0.0423
X 0.9889, 0.81 0.9651, 0.7 4.588, 0.02377 5.221, 0.0252

32 7 1.5452 , 2.25 1.3855, 1.44 7.006 , 0.0536 8.613, 0.0542
X 0.9407, 1.03 0.9025, 0.7 4.1318, 0.0189 4.203, 0.0195

Table 1. Importance of different batch sizes and scaled loss learn-
ing (SLL) in RPSRNet: Our method using scaled loss learning
(SLL) with 32 input samples in a batch reports minimum rota-
tional and translation RMSE on both the KITTI and ModelNet40
datasets There is a notable exception on ∆trmse while using the
batch size 16 for KITTI (K2-w) setup.

We investigate thoroughly how different batch sizes,
scaled version of our loss function (Sec.3.3 of main matter)
and pre-processing step of removing ground points impact
on the final prediction accuracies. The evaluation Table 1
shows that with scaling, there are notable improvements
on translation error for KITTI [5] dataset. The similar im-
provement on rotational error is clear for ModelNet40 [12]
dataset. For the experiments in the main matter, we select
batch size 16.

2. BH 2D-tree Convolution and Node Indexing

This section describes the compact storage mechanism
and input signal processing of our BH 2D-tree representa-
tion of point cloud. To this end, we have already saved sev-
eral lists of attributes of the tree nodes at every depth d:

Figure 1. An exemplary Barnes-Hut 2D-Tree: (A) Different types of BH-tree nodes and space-filling Morton’s ‘Z’-curve for tree traversal.
(B) Overview of the labeling, indexing, neighborhood system through parent-child relationships.

(i) Md, Nd, and ρ−d – the center of masses (CoMs) Md and
the inverse densities (IDs) ρ−d of the non-empty nodes Nd

linearly store the respective values
(ii) Ld – a label array Ld stores the sorted indices of non-
empty nodes in an increasing order. This array holds -1
value to those positions where the nodes are empty. The
Fig. 1 gives the complete overview of depth-wise labeling
and indexing of the nodes.
(iii) κd – Finally, we have a set of 26i neighbors κd(nd,l) for
every non-empty node nd,l ∈ Nd at depth d ∈ {1, 2, . . .}
and label l ∈

{
1, 2, . . . , (23)d

}
. The Fig. 2 describes the

adjacency system of a given node.

ior 27 neighbors including itself

2D-tree Convolution. The first hierarchical embedding
block (HFE) for positional features takes the CoMs array
Md which has x, y, and, z coordinates as 3 input chan-
nels. The other dimension is the number of non-empty
nodes, i.e., |Nd|. Another separate HFE for density fea-
tures takes the IDs as 1D scalar array. For this we first tile
the input to match the same dimension of position channel,
i.e., |Nd| × 3. The integer array Ld has the storage size of
23 · |Nd|. For 1D convolution on all nd,l ∈ Nd the with
kernel size 26 and stride 26, we first perform a neighbor-fill
operation. To keep our input tensor of fixed size equal to
26 · |Nd|, we fill the positions of the array with zero which
are empty.

Figure 2. Neighbors of a non-empty node at depth d. 26 adja-
cent nodes κd(nd,l) of nd,l (always at the current depth of con-
volving node) are the ones which are at the extreme end by r

2d

length from nd,l. The zero-fill operation sets zero values to the
neighbors which are found empty. A linear array stores the neigh-
bors contagiously following the order shown at right. Therefore,
our 1D convolution kernel size is 26.

Hierarchical Pooling. Pooling is a converse operation
of convolution where we fetch the information from child
nodes to the parent nodes or in other words from nodes at
the higher depth of our BH-tree to the lower depth, e.g.,
from d = 3 2. After a convolution, the parent-child infor-
mation needs to be reconstructed for Max-Pooling. Lets ob-
serve the parent-child relationship using Ld. The jth child
Cj(Pi) of a non-empty parent node Pi = nd,i = Nd[i] can
be retrieved from the array N(d+1), using the formula:

Cj(Pi) = Nd+1[Ld+1[i · 8 + j]] (1)

Since we store the labels at every depth and do not recom-
pute the neighbors at runtime, we first perform a child-fill
operation which is to fill attributes’ values of the empty
neighbor nodes by zero at the current depth. Therefore our
input-tensor will have the size of 23 · |Nd| as of the label
array Ld. For the neighbor-fill and child-fill operations, we
write custom functions in CUDA/C++ for Pytorch-binding.

3. Insightful Results and Evaluations.
We present more insightful registration results for

KITTI [5] LiDAR odometry and ModelNet40 [12] datasets
(see Table. 2, Fig. 3, and Fig. 4 respectively). The quanti-
tative results on KITTI dataset give important few remarks
about other methods:

1. Only on seq-00 and seq-05, FGR and ICP wins the
contest of lowest translation error. Although, their dif-
ference from RPSRNet is significantly small.

2. In the (K2) setup, all methods record higher transfor-
mation errors, especially on translational part, on most
of the sequences.

3. On seq-01, GA [6], FGR [13], ICP [3] FilterReg [4],
PointNetLK [1], and our RPSRNet1 (single internal it-
eration) report 39%, 119%, 6%, 171%, 86% and 6.90%

increase in the translational error when evaluated on
(K2) setup compared to the same on (K1) setup.

On the other hand, Fig. 3 and 4 show registration out-
comes from competing methods on some randomly selected
samples. The final alignments applying different methods
show that most methods struggle to find globally optimal
transformation when input data is largely incomplete.

References
[1] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivat-

san, and Simon Lucey. Pointnetlk: Robust and efficient point
cloud registration using pointnet. In CVPR, 2019. 1, 3, 4

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for
Semantic Scene Understanding of LiDAR Sequences. In In-
ternational Conf. on Computer Vision (ICCV), 2019. 5

[3] P. J. Besl and N. D. McKay. A method for registration of
3-d shapes. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 14(2):239–256, 1992. 1, 3, 4

[4] Wei Gao and Russ Tedrake. Filterreg: Robust and effi-
cient probabilistic point-set registration using gaussian filter
and twist parameterization. In Computer Vision and Pattern
Recognition (CVPR), 2019. 1, 3, 4

[5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 1, 3, 4,
5

[6] Vladislav Golyanik, Sk Aziz Ali, and Didier Stricker. Gravi-
tational approach for point set registration. Computer Vision
and Pattern Recognition (CVPR), 2016. 1, 3, 4

[7] A. Myronenko and X. Song. Point set registration: Coherent
point drift. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 32(12):2262–2275, 2010. 1, 4

[8] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3d registration. In International Con-
ference on Robotics and Automation (ICRA), 2009. 1

[9] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Align-
ing point cloud views using persistent feature histograms. In
International Conference on Intelligent Robots and Systems
(IROS), 2008. 1

[10] Yue Wang and Justin Solomon. Deep closest point: Learning
representations for point cloud registration. In International
Conference on Computer Vision (ICCV), pages 3523–3532,
2019. 1, 4

[11] Yue Wang and Justin Solomon. Prnet: Self-supervised learn-
ing for partial-to-partial registration. In Advances in Neural
Information Processing Systems (NIPS), pages 8812–8824,
2019. 1

[12] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and J. Xiao. 3d shapenets: A deep rep-
resentation for volumetric shapes. In Computer Vision and
Pattern Recognition (CVPR), 2015. 1, 3

[13] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global
registration. In European Conference on Computer Vision
(ECCV), 2016. 1, 3, 4

On KITTI [5] Dataset

Seq.
CPD [7]

ϕrmse, ∆trmse

GA* [6]
ϕrmse, ∆trmse

FGR [13]
ϕrmse, ∆trmse

ICP [3]
ϕrmse, ∆trmse

FilterReg [4]
ϕrmse, ∆trmse

DCP-v2 [10]
ϕrmse, ∆trmse

PointNetLK [1]
ϕrmse, ∆trmse

RPSRNet1 (ours)
ϕrmse, ∆trmse

RPSRNet3 (ours)
ϕrmse, ∆trmse

00 4.99, 1.12 4.82, 1.09 4.77, 0.82 4.72, 0.80 4.77, 0.80 4.87, 1.07 5.44, 1.27 4.48, 1.01 3.30, 0.81
4.91, 1.39 4.78, 0.93 4.78, 0.83 4.70, 0.84 4.92, 0.88 4.78, 0.80 6.11, 1.27 4.56, 0.73 3.31, 1.0

01 3.18, 1.54 2.99, 1.74 3.06, 1.10 3.06, 2.27 3.02, 0.89 3.0, 0.95 4.50, 1.33 2.79, 1.28 2.13, 0.48
3.15, 1.88 3.06, 2.42 2.88, 2.42 2.83, 2.41 2.77, 2.41 1.80, 0.68 5.22, 1.18 3.04, 1.38 2.0, 1.03

02 3.87, 1.28 3.67, 0.98 3.71, 1.02 3.63, 1.0 3.42, 0.69 3.52, 0.76 4.21, 1.0 3.69, 0.73 2.66, 0.6
3.0, 1.11 3.71, 1.09 3.66, 0.9 3.66, 0.91 3.81, 1.1 3.52, 0.53 5.77, 0.96 3.73, 1.10 2.88, 1.11

03 0.38, 0.88 0.34, 0.72 0.31, 0.59 0.14, 0.56 0.14, 0.49 0.24, 0.66 0.90, 0.81 0.14, 0.72 0.10, 0.41
0.23, 0.58 0.18, 0.43 0.20, 0.74 0.13, 0.91 0.35, 0.78 0.18, 0.3395 2.1, 1.01 0.16, 0.85 0.08, 0.68

04 2.58, 1.09 2.64, 1.12 2.65, 1.06 2.64, 1.07 1.97, 0.89 2.20, 1.37 3.88, 1.31 2.74, 0.55 1.11, 0.50
2.77, 0.91 2.64, 0.85 2.64, 1.09 2.65, 1.11 2.11, 1.18 2.07, 1.01 4.86, 1.27 2.28, 0.38 1.19, 0.21

05 3.81, 0.79 3.41, 0.7135 3.29, 0.4142 2.95, 0.75 3.16, 0.62 2.01, 0.42 4.09, 0.79 3.09, 0.87 1.91, 0.71
3.0, 0.69 3.30, 0.64 3.27, 0.80 2.8, 1.12 3.89, 0.99 3.15, 0.63 4.2, 1.12 3.35, 1.06 1.11, 0.91

06 4.67, 0.96 4.13, 0.85 4.04, 0.87 3.64, 1.20 4.04, 0.88 3.02, 0.69 3.08, 0.99 4.01, 0.64 3.0, 0.50
2.85, 1.28 1.55, 1.02 4.13, 1.21 3.26, 1.32 4.03, 1.29 3.74, 0.48 4.87, 0.97 2.64, 0.48 3.94, 0.69

07 4.89, 1.0 4.39, 0.78 4.46, 0.91 4.41, 1.03 4.11, 0.99 4.48, 1.22 6.04, 1.44 4.06, 0.81 3.58, 0.61
4.31, 0.71 4.34, 0.77 4.46, 0.88 4.37, 0.95 4.22, 0.99 4.45, 1.58 8.21, 1.81 4.45, 1.08 3.11, 1.07

Table 2. Evaluation on KITTI [5] LiDAR sequences 00 to 07. The first row under each sequence reports the RMSE on angular and
translational deviations from ground-truth measured on its validation samples in (K1-w/o) setup: without ‘ground points’. The next row
under the same sequence reports the same error (with gray-colored and italic font-style for better distinction) on the same validation set in
(K2-w) setup: with ‘ground points’. The lowest transformation errors achieved by a method is highlighted in bold or underlined bold font.

Figure 3. Registration outcomes on few samples of ModelNet40 dataset. The results show robustness of RPSRNet compared to state-of-
the-art methods.

Figure 4. Results of our RPSRNet3 on some randomly selected samples from the validation set of KITTI [5, 2] dataset (left column: frame
000131 (as Y) and 000136 (as X) of seq-01 and right column: frame 001721 (as Y) and 001726 (as X) from the seq-05). Zoomed parts
of each image highlights how other competing methods perform in aligning static objects of target scene.

