

CADOps-Net: Jointly Learning CAD Operation Types and Steps from Boundary-Representations

Elona Dupont^{*} Kseniya Cherenkova^{**} Anis Kacem^{*} Sk Aziz Ali^{*}

Ilya Arzhannikov^{*} Gleb Gusev^{*} Djamila Aouada^{*}

SnT, University of Luxembourg

Motivation

The <u>parametric nature</u> of CAD models allows engineers and designers to iterate over the parameters of existing CAD models to <u>edit and adapt</u> them to <u>new contexts</u>.

Motivation

The <u>parametric nature</u> of CAD models allows engineers and designers to iterate over the parameters of existing CAD models to <u>edit and adapt</u> them to <u>new contexts</u>.

BUT

Motivation

The parametric nature of CAD models allows engineers and designers to iterate over the parameters of existing CAD models to <u>edit and adapt</u> them to <u>new contexts</u>.

BUT

This is only possible if the final shape of the CAD model comes with its **<u>design history</u>**.

CAD construction history

CAD operation step

CAD operation type

CAD construction history

CAD operation step

CAD operation type

CAD construction history

CAD operation step

CAD operation type

CAD construction history

CAD operation step

CAD operation type

CAD operation steps are <u>unordered</u> and the number of CAD steps in a B-Rep is <u>not known in</u> <u>advance.</u>

Input:

B-Rep, \mathcal{B} of f_1 , faces, e_1 , edges and N_c co-edges defined by:

- Face features: $\mathbf{F} \in \mathbb{R}^{N_f \times d_f}$
- Edge features: $\mathbf{E} \in \mathbb{R}^{N_e \times d_e}$
- Co-edge features: $\mathbf{C} \in \mathbb{R}^{N_c \times d_c}$

<u>Output:</u>

- \circ per-face CAD operation types: $\mathbf{T} = [\mathbf{t}_1; \mathbf{t}_2; \ldots; \mathbf{t}_{N_f}] \in \{0, 1\}^{N_f \times k_t}$
- \circ per-face CAD operation steps: $\mathbf{S} = [\mathbf{s}_1; \mathbf{s}_2; \dots; \mathbf{s}_{N_f}] \in \{0, 1\}^{N_f \times k_s}$

), 1 Number of CAD operation types

```
. 1^: Number of CAD operation types
```

$\Psi(\mathbf{F}, \mathbf{E}, \mathbf{C}) = \mathbf{S}$

CAD operation step mapping: $\Psi: \mathbb{R}^{N_f \times d_f} \times \mathbb{R}^{N_e \times d_e} \times \mathbb{R}^{N_c \times d_c} \to \{0, 1\}^{N_f \times k_s}$

$\Phi: \mathbb{R}^{N_f \times d_f} \times \mathbb{R}^{N_e \times d_e} \times \mathbb{R}^{N_c \times d_c} \to \{0, 1\}^{N_f \times k_t}$ $\Phi(\mathbf{F}, \mathbf{E}, \mathbf{C}) = \mathbf{T}$

CAD operation type mapping:

Learn mappings Ξ, c and $\underline{C}, \underline{C}$ such that:

Problem Formulation

Table of contents

I Related Works

II Contributions

III Proposed Approach

IV Experimental Results

V Conclusions

VI Future Works

CAD construction history recovery

Generative models

<u>SketchGraphs</u> [1]:

- Graph model with constraints as edges and primitives as nodes.
- Graph neural network architecture

CAD as a language [2]:

- Data serialization protocol to model the geometry and constraints
- Transformer + Pointer Net Backbone

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

CAD construction history recovery

Generative models

<u>SketchGraphs</u> [1]:

- Graph model with constraints as edges and primitives as nodes.
- Graph neural network architecture

CAD as a language [2]:

- Data serialization protocol to model the geometry and constraints
- Transformer + Pointer Net Backbone

Only consider 2D sketches not 3D CAD models

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

CAD construction history recovery

Generative models

<u>2D sketches:</u> SketchGraphs [1] and CAD as a language [2]

<u>DeepCAD</u> [3]:

- Models construction history as a language
- Transformer architecture
 <u>Fusion360</u> [4]:
- Models construction history as a Markov decision process
- Neurally guided search (reinforcement learning)
 <u>Zonegraph</u> [5] :
- Graph representation of B-Rep
- Nodes: solid regions formed by extending all B-Rep faces
- Edges: geometric adjacencies between nodes
- Graph neural network

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

[3] Wu, R., Xiao, C., & Zheng, C. (2021). Deepcad: A deep generative network for computer-aided design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6772-6782)

[4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction.

[5] Xu, X., Peng, W., Cheng, C. Y., Willis, K. D., & Ritchie, D. (2021). Inferring cad modeling sequences using zone graphs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6062-6070).

CAD construction history recovery

Generative models

<u>2D sketches:</u> SketchGraphs [1] and CAD as a language [2]

<u>DeepCAD</u> [3]:

- Models construction history as a language
- Transformer architecture
 <u>Fusion360</u> [4]:
- Models construction history as a Markov decision process
- Neurally guided search (reinforcement learning)
 <u>Zonegraph</u> [5] :
- Graph representation of B-Rep
- Nodes: solid regions formed by extending all B-Rep faces
- Edges: geometric adjacencies between nodes
- Graph neural network

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

[3] Wu, R., Xiao, C., & Zheng, C. (2021). Deepcad: A deep generative network for computer-aided design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6772-6782)

[4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction.

[5] Xu, X., Peng, W., Cheng, C. Y., Willis, K. D., & Ritchie, D. (2021). Inferring cad modeling sequences using zone graphs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6062-6070).

Sketch, extrusion, boolean operation only

CAD construction history recovery

Generative models

2D sketches:

- SketchGraphs [1]
- CAD as a language [2]

Sketch, extrusion, boolean:

- DeepCAD [3]
- Fusion360 [4]
- Zonegraph [5]

<u>CADNet [6] :</u>

<u>UV-Net</u> [7]:

BRepNet [8]:

Feature Recognition. Computer-Aided Design, 147, 103226.

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

[3] Wu, R., Xiao, C., & Zheng, C. (2021). Deepcad: A deep generative network for computer-aided design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6772-6782)

[4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction.

[5] Xu, X., Peng, W., Cheng, C. Y., Willis, K. D., & Ritchie, D. (2021). Inferring cad modeling sequences using zone graphs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6062-6070).

• Focused on machining features • Hierarchical B-Rep graph shape representation • Graph convolutional network

• Extract UV-grids for curves and surfaces and faceadjacency graph from B-Reps • Couples image and graph convolutional neural networks

• Convolutional kernels with respect to oriented coedges • Neural network architecture designed to operate directly on B-rep data structures

^[6] Colligan, A. R., Robinson, T. T., Nolan, D. C., Hua, Y., & Cao, W. (2022). Hierarchical CADNet: Learning from B-Reps for Machining

^[7] Jayaraman, P. K., Sanghi, A., Lambourne, J. G., Willis, K. D., Davies, T., Shayani, H., & Morris, N. (2021). Uv-net: Learning from boundary representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11703-11712). [8] Lambourne, J. G., Willis, K. D., Jayaraman, P. K., Sanghi, A., Meltzer, P., & Shayani, H. (2021). Brepnet: A topological message passing system for solid models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12773-12782).

CAD construction history recovery

Generative models

2D sketches:

- SketchGraphs [1] Face segmentation • CAD as a language [2] Sketch, extrusion, boolean: by CAD command • DeepCAD [3] type is insufficient • Fusion360 [4] to recover sketches • Zonegraph [5] and therefore construction
 - history

<u>CADNet [6] :</u>

<u>UV-Net</u> [7]:

BRepNet [8]:

- on B-rep data structures

Feature Recognition. Computer-Aided Design, 147, 103226.

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

[3] Wu, R., Xiao, C., & Zheng, C. (2021). Deepcad: A deep generative network for computer-aided design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6772-6782)

[4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction.

[5] Xu, X., Peng, W., Cheng, C. Y., Willis, K. D., & Ritchie, D. (2021). Inferring cad modeling sequences using zone graphs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6062-6070).

• Focused on machining features • Hierarchical B-Rep graph shape representation • Graph convolutional network

• Extract UV-grids for curves and surfaces and faceadjacency graph from B-Reps • Couples image and graph convolutional neural networks

• Convolutional kernels with respect to oriented coedges • Neural network architecture designed to operate directly

^[6] Colligan, A. R., Robinson, T. T., Nolan, D. C., Hua, Y., & Cao, W. (2022). Hierarchical CADNet: Learning from B-Reps for Machining

^[7] Jayaraman, P. K., Sanghi, A., Lambourne, J. G., Willis, K. D., Davies, T., Shayani, H., & Morris, N. (2021). Uv-net: Learning from boundary representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11703-11712). [8] Lambourne, J. G., Willis, K. D., Jayaraman, P. K., Sanghi, A., Meltzer, P., & Shayani, H. (2021). Brepnet: A topological message passing system for solid models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12773-12782).

CAD construction history recovery

Generative models

2D sketches:

• SketchGraphs [1] Face segmentation • CAD as a language [2] Sketch, extrusion, boolean: by CAD command • DeepCAD [3] type is insufficient • Fusion360 [4] to recover sketches • Zonegraph [5] and therefore construction

history

<u>CADNet [6] :</u>

<u>UV-Net</u> [7]:

BRepNet [8]:

- on B-rep data structures

Feature Recognition. Computer-Aided Design, 147, 103226.

[1] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). Sketchgraphs: A large-scale dataset for modeling relational geometry in computer-aided design. arXiv preprint arXiv:2007.08506.

[2] Ganin, Y., Bartunov, S., Li, Y., Keller, E., & Saliceti, S. (2021). Computer-aided design as language. Advances in Neural Information Processing Systems, 34, 5885-5897.

[3] Wu, R., Xiao, C., & Zheng, C. (2021). Deepcad: A deep generative network for computer-aided design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6772-6782)

[4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction.

[5] Xu, X., Peng, W., Cheng, C. Y., Willis, K. D., & Ritchie, D. (2021). Inferring cad modeling sequences using zone graphs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6062-6070).

• Focused on machining features • Hierarchical B-Rep graph shape representation • Graph convolutional network

• Extract UV-grids for curves and surfaces and faceadjacency graph from B-Reps • Couples image and graph convolutional neural networks

• Convolutional kernels with respect to oriented coedges • Neural network architecture designed to operate directly

^[6] Colligan, A. R., Robinson, T. T., Nolan, D. C., Hua, Y., & Cao, W. (2022). Hierarchical CADNet: Learning from B-Reps for Machining

^[7] Jayaraman, P. K., Sanghi, A., Lambourne, J. G., Willis, K. D., Davies, T., Shayani, H., & Morris, N. (2021). Uv-net: Learning from boundary representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11703-11712). [8] Lambourne, J. G., Willis, K. D., Jayaraman, P. K., Sanghi, A., Meltzer, P., & Shayani, H. (2021). Brepnet: A topological message passing system for solid models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12773-12782).

• ABC dataset [1] provides 1M + CAD models with sparse construction history provided in Onshape proprietary format.

[1] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., ... & Panozzo, D. (2019). Abc: A big cad model dataset for geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9601-9611).

- <u>ABC dataset [1], Onshape proprietary format.</u> \bigcirc
- Both MFCAD [2] and MFCAD++ [3] synthetic datasets contain B-Reps and Ο machining feature labels.

[1] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., ... & Panozzo, D. (2019). Abc: A big cad model dataset for geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9601-9611).

[2] Zhang, Z., Jaiswal, P., & Rai, R. (2018). Featurenet: Machining feature recognition based on 3d convolution neural network. Computer-Aided Design, 101, 12-22. [3] Colligan, A. R., Robinson, T. T., Nolan, D. C., Hua, Y., & Cao, W. (2022). Hierarchical CADNet: Learning from B-Reps for Machining Feature Recognition. Computer-Aided Design, 147, 103226.

- <u>ABC dataset [1]</u>, *Onshape proprietary format.*
- <u>MFCAD [2] and MFCAD++ [3] datasets</u>, synthetic. \bigcirc
- \circ Fusion360 dataset [4] contains 35k+ CAD models with their corresponding construction history. However most models are *relatively simple*.

[1] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., ... & Panozzo, D. (2019). Abc: A big cad model dataset for geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9601-9611).

[2] Zhang, Z., Jaiswal, P., & Rai, R. (2018). Featurenet: Machining feature recognition based on 3d convolution neural network. Computer-Aided Design, 101, 12-22. [3] Colligan, A. R., Robinson, T. T., Nolan, D. C., Hua, Y., & Cao, W. (2022). Hierarchical CADNet: Learning from B-Reps for Machining Feature Recognition. Computer-Aided Design, 147, 103226. [4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction.

- <u>ABC dataset</u> [1], *Onshape proprietary format*.
- <u>MFCAD</u> [2] and <u>MFCAD++</u> [3] <u>datasets</u>, *synthet*ic. \bigcirc
- <u>Fusion360 dataset</u> [4], *relatively simple models*. \bigcirc
- <u>CC3D dataset</u> [5] offers 50k+ pairs of industrial CAD models as triangular meshes and their corresponding 3D scans, but *without construction steps and B-Reps*.

[1] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., ... & Panozzo, D. (2019). Abc: A big cad model dataset for geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9601-9611).

[2] Zhang, Z., Jaiswal, P., & Rai, R. (2018). Featurenet: Machining feature recognition based on 3d convolution neural network. Computer-Aided Design, 101, 12-22. [3] Colligan, A. R., Robinson, T. T., Nolan, D. C., Hua, Y., & Cao, W. (2022). Hierarchical CADNet: Learning from B-Reps for Machining Feature Recognition. Computer-Aided Design, 147, 103226. [4] Willis, K., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J., ... & Matusik, W. (2020). Fusion 360 gallery: A dataset and environment for programmatic cad reconstruction. [5] Cherenkova, K., Aouada, D., & Gusev, G. (2020, October). Pvdeconv: Point-voxel deconvolution for autoencoding cad construction in 3d. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 2741-2745). IEEE.

II Contributions

Contributions

- A neural network, **CADOps-Net**, to learn the segmentation of faces into CAD operation **types** and **steps** from **B-Reps**.
- **A joint learning** method within an end-to-end model.

Contributions

- A neural network, **CADOps-Net**, to learn the segmentation of faces into CAD operation **types** and **steps** from **B-Reps**.
- A **joint learning** method within an end-to-end model.
- **Novel dataset**, **CC3D-Ops**, with ~**37***k* B-Reps and corresponding per-face CAD operation type and step annotations.

op.step

Contributions

- A neural network, **CADOps-Net**, to learn the segmentation of faces into CAD operation **types** and **steps** from **B-Reps**.
- A **joint learning** method within an end-to-end model.
- **Novel dataset, CC3D-Ops**, with ~**37k** B-Reps and corresponding per-face CAD operation type and step annotations.
- Evaluation on two datasets and compared to recent SOTA methods.
- Possible downstream application: **CAD sketch recovery** from B-Reps.

III Proposed Approach

Extract face embeddings: \mathbf{F}^{Δ}

Predict per face operation step labels: ,1

Predict per face operation step labels:

Use Hungarian matching to identify the correspondance between the ground truth and prediction CAD step labels.

Aggregate face features to obtain step embeddings: $\mathbf{S}^\mathcal{A}$

 \mathcal{A} : Aggregation function

Concatenate face and step embeddings: $\mathbf{F}^{\Delta} \oplus \mathbf{S}^{\mathcal{A}}$

$\mathbf{F}^{\Delta} \oplus \mathbf{S}^{\mathcal{A}}$

Predict per face operation step labels:, 1

CADOps-Net

Network Output

CAD Operation Type: $\widehat{\mathbf{T}} \in [\mathbf{0}, \mathbf{1}]^{N_f imes k_t}$

CAD Operation Step: $\widehat{\mathbf{S}} \in [\mathbf{0}, \mathbf{1}]^{N_f imes k_s}$

- [0, 1]: Number of faces
-), 1] : Number of CAD operation types
- , **1** : Number of CAD operation types

IV Experimental Results

Qualitative Results on CC3D-Ops dataset

Qualitative Results on CC3D-Ops dataset

model.

Observations:

• Correctness of operation type predictions do not depend on the complexity of the

Qualitative Results on CC3D-Ops dataset

- - model.
- This does not appear to be the case for the operation step predictions.
- The operation step segmentation task is Ο more challenging as it relates to the construction history.

Observations:

 Correctness of operation type predictions do not depend on the complexity of the

Quantitative Results - SOTA Comparison

	Model	Operat	ion Type	Operation Step		
		mAcc	mIoU	mAcc	mArea	
0	CADNet [5]	88.9	67.9	-	-	
36	UV-Net [12]	92.3	72.4	-	-	
ion	BRepNet [17]	94.3	81.4	-	-	
Fus	Ours w/o JL ⁻	95.5	83.2	80.2	86.2	
	Ours w/ JL ⁺	95.9	84.2	82.5	86.0	
sde	CADNet [5]	57.5	26.9	-	-	
0-0	BRepNet [17]	71.4	35.9	-	-	
C31	Ours w/o JL ⁻	76.0	43.0	48.4	50.7	
C	Ours w/ JL ⁺	75.0	44.3	62.7	75.1	

Quantitative Results - SOTA Comparison

	Model	Operation Type		Operation Step	
	1110401	mAcc	mIoU	mAcc	mArea
0	CADNet [5]	88.9	67.9	-	-
36(UV-Net [12]	92.3	72.4	-	-
ion	BRepNet [17]	94.3	81.4	-	-
Fus	Ours w/o JL ⁻	95.5	83.2	80.2	86.2
	Ours w/ JL ⁺	95.9	84.2	82.5	86.0
sde	CADNet [5]	57.5	26.9	-	-
0-0	BRepNet [17]	71.4	35.9	-	-
C31	Ours w/o JL ⁻	76.0	43.0	48.4	50.7
C	Ours w/ JL ⁺	75.0	44.3	62.7	75.1

Observations:

 The joint learning strategy provides small improvements for both the operation type and step predictions.

Quantitative Results - SOTA Comparison

	Model	Operation Type		Operation Step	
	model	mAcc	mIoU	mAcc	mArea
ion360	CADNet [5]	88.9	67.9	-	-
	UV-Net [12]	92.3	72.4	-	-
	BRepNet [17]	94.3	81.4	-	-
lus	Ours w/o JL ⁻	95.5	83.2	80.2	86.2
<u> </u>	Ours w/ JL+	95.9	84.2	82.5	86.0
CC3D-Ops	CADNet [5]	57.5	26.9	-	-
	BRepNet [17]	71.4	35.9	-	-
	Ours w/o JL ⁻	76.0	43.0	48.4	50.7
	Ours w/ JL ⁺	75.0	44.3	62.7	75.1

Observations:

ne joint learning strategy provides mall improvements for both the peration type and step predictions n the Fusion360 dataset.

ne joint learning strategy provides gnificant improvements for the peration step predictions on the nore complex CC3D-Ops dataset.

Quantitative Results

Quantitative Results

Quantitative Results

Possible downstream application: Sketch detection

Demonstrate the relevance of predicting both the operation type and step.

Possible downstream application: Sketch detection

- Demonstrate the relevance of predicting both the operation type and step.
- Propose a simple method to detect sketches on models made from extrusion only.

Limitations

Limitations

- There are **different valid methods** to construct the **same CAD model**.
- CADOps-Net sometimes make valid predictions that are labelled as incorrect.

V Conclusions

• **CADOps-Net**, a neural network that **jointly** learns the CAD operation **type** and **step** segmentation of **B-Rep** faces.

- **CADOps-Net**, a neural network that **jointly** learns the CAD operation **type** and **step** segmentation of **B-Rep** faces.
- The **joint learning strategy** leads to
 - significantly better results for the CAD operation step segmentation,
 - state-of-the-art results on the CAD operation type segmentation task.

- CADOps-Net, a neural network that jointly learns the CAD operation type and **step** segmentation of **B-Rep** faces.
- The **joint learning strategy** leads to
 - significantly better results for the CAD operation step segmentation,
 - state-of-the-art results on the CAD operation type segmentation task.
- **Recovery** of further useful information of the **construction history** such as **2D** sketches.

- CADOps-Net, a neural network that jointly learns the CAD operation type and **step** segmentation of **B-Rep** faces.
- The **joint learning strategy** leads to
 - significantly better results for the CAD operation step segmentation,
 - state-of-the-art results on the CAD operation type segmentation task.
- **Recovery** of further useful information of the **construction history** such as **2D** sketches.
- CC3D-Ops dataset with B-Reps and operation type and step annotations.