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and designers to iterate over the parameters of existing
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BUT

This is only possible if the final shape of the CAD model
comes with its design history.
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CAD operation steps
are unordered and
the number of CAD
steps in a B-Rep is
not known in
advance.



Face features: 
Edge features:
Co-edge features: 

Input: 
B-Rep,    , of       faces,       edges and        co-edges defined by:
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per-face CAD operation types:
per-face CAD operation steps:

Output: 
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: Number of CAD operation types
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CAD operation type mapping:

CAD operation step mapping:
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A neural network, CADOps-Net, to learn the segmentation of faces into CAD
operation types and steps from B-Reps. 
A joint learning method within an end-to-end model.

Novel dataset, CC3D-Ops, with ~37k B-Reps and corresponding per-face CAD
operation type and step annotations.

Evaluation on two datasets and compared to recent SOTA methods. 

Possible downstream application: CAD sketch recovery from B-Reps.
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Qualitative Results on CC3D-Ops dataset

Correctness of operation type predictions
do not depend on the complexity of the
model.
This does not appear to be the case for
the operation step predictions.
The operation step segmentation task is
more challenging as it relates to the
construction history.

Observations:
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Quantitative Results - SOTA Comparison

The joint learning strategy provides
small improvements for both the
operation type and step predictions
on the Fusion360 dataset.

The joint learning strategy provides
significant improvements for the
operation step predictions on the
more complex CC3D-Ops dataset.

Observations:
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Quantitative Results

Type predictions do not depend on
the complexity of the models.

Step predictions mAcc decreases as
the number of steps per model
increases.
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Possible downstream application: Sketch detection
Demonstrate the relevance of
predicting both the operation
type and step.

Propose a simple method to
detect sketches on models made
from extrusion only.
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Limitations

There are different valid methods to construct the same CAD model.
CADOps-Net sometimes make valid predictions that are labelled as incorrect.
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Conclusion
CADOps-Net, a neural network that jointly learns the CAD operation type and
step segmentation of B-Rep faces. 

The joint learning strategy leads to 
significantly better results for the  CAD operation step segmentation, 
state-of-the-art results on the CAD operation type segmentation task.

Recovery of further useful information of the construction history such as 2D
sketches. 

CC3D-Ops dataset with B-Reps and operation type and step annotations. 


