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Abstract

3D reverse engineering is a long sought-after, yet not
completely achieved goal in the Computer-Aided Design
(CAD) industry. The ultimate objective is to recover the
construction history of a CAD model. Starting from a
Boundary Representation (B-Rep) of a CAD model, this pa-
per proposes a new deep neural network, CADOps-Net,
that jointly learns the CAD operation types and the de-
composition into different CAD operation steps. This joint
learning allows to divide a B-Rep into parts that were cre-
ated by various types of CAD operations at the same con-
struction step; therefore providing relevant information for
further recovery of the design history. Furthermore, we pro-
pose the novel CC3D-Ops dataset that includes over 37k
CAD models annotated with CAD operation type labels and
step labels. Compared to existing datasets, the complex-
ity and variety of CC3D-Ops models are closer to those
used for industrial purposes. Our experiments, conducted
on the proposed CC3D-Ops and the publicly available Fu-
sion360 datasets, demonstrate the competitive performance
of CADOps-Net with respect to state-of-the-art, and confirm
the importance of the joint learning of CAD operation types
and steps.

1. Introduction
In today’s digital era, Computer-Aided Design (CAD) is

the standard option for designing objects ahead of manu-
facturing [36, 2, 35]. The parametric nature of CAD mod-
els allows engineers and designers to iterate over the pa-
rameters of existing CAD models to edit and adapt them to
new contexts, such as customizing dental prostheses [32],
or modifying mechanical parts [34]. However, this is only
possible if the final shape of the CAD model comes with
its design history. Unfortunately, this is rarely the case
as the design history is often not available for generic 3D
shapes [6] or lost when CAD models are exchanged be-

Figure 1: B-Rep segmentation into CAD operations types
and steps.

tween different CAD applications [13, 17]. Consequently,
the research community has put a lot of efforts in relat-
ing the geometry of 3D shapes to the CAD design his-
tory [17, 12, 31, 6, 44, 42]. This process is known as 3D re-
verse engineering.

Prior works attempted to recover the CAD design his-
tory, considering Constructive Solid Geometry (CSG) based
models [6, 31] for simplicity. In CSG, a CAD model is rep-
resented by a set of rigidly transformed solid primitives (e.g.
cube, sphere, cylinder) and combined using Boolean opera-
tions such as union, intersection, and difference [8]. How-
ever, modern CAD workflows use feature-based modeling,
in which solids are created by iteratively adding features
such as holes, slots, or bosses [44, 45]. These high-level
features are sequentially created through drawing sketches
and applying CAD operations such as ‘extrusion’, ‘revolu-
tion’, etc. Figure 1a illustrates an example of feature-based
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simple CAD model creation. Using this type of CAD mod-
eling, the final model is stored in a data structure called
Boundary-Representation (B-Rep). The B-Rep describes
the geometry and the topology of the CAD model through
faces, edges, loops, co-edges and vertices [17]. However,
it does not include information about how these entities
are designed. Accordingly, recent efforts in the state-of-
the-art have focused on relating B-Reps to the design his-
tory [44, 17, 12]. In particular, two main directions have
been followed: (1) segmenting the B-Rep faces into CAD
operation types (e.g. ‘extrusion’, ‘revolution’) [12, 17] or
higher-level machining features (e.g. ‘holes’, ‘slots’) [5]
that allowed their creation; (2) inferring a sequence of para-
metric sketches and extrusions that allowed the design of
the B-Rep [44, 40, 37]. While the first group of works have
the advantage of relating each face of the B-Rep to various
types of CAD operations, they do not describe the relation-
ship between the faces nor the steps of the construction. On
the other hand, the works taking the second direction recon-
struct the ordered sequence of the design history, including
sketches, but they are usually limited to only one CAD oper-
ation type (i.e. ‘extrusion’) as a simplification of the search
space.

In this work, we combine both directions by segmenting
the faces of the B-Reps into various CAD operation types
and further decomposing them into steps of construction as
shown in Figure 1. These two aspects are jointly learned us-
ing an end-to-end neural network, allowing the recovery of
further information about the design history such as CAD
sketches. The proposed method is evaluated on the publicly
available Fusion360 dataset [40], and a newly introduced
dataset that is closer to real-world challenges. The key con-
tributions can be summarized as follows:

• A neural network, CADOps-Net, that operates on B-
Reps is proposed to learn the segmentation of faces
into CAD operation types and steps. We introduce a
joint learning method within an end-to-end model.

• We create a novel dataset, CC3D-Ops, that builds on
top of the existing CC3D dataset [4] by extending it
with B-Reps and their corresponding per-face CAD
operation type and step annotations. Compared to ex-
isting datasets [40, 23, 14], CC3D-Ops better reflects
real-world industrial challenges thanks to the complex-
ity of its CAD models. This dataset will be shared with
the research community.

• The proposed approach is evaluated on two datasets
and compared to recent state-of-the-art methods. We
further showcase some preliminary results on a possi-
ble downstream application consisting of CAD sketch
recovery from B-Reps.

The rest of the paper is organized as follows; We discuss
the works related to ours in Section 2 followed by the for-
mulation of problem in Section 3. Section 4 describes the

proposed CADOps-Net. The proposed CC3D-Ops dataset
is introduced in Section 5. The experimental results are re-
ported and analyzed in Section 6. Finally, Section 7 con-
cludes this work and presents directions for future work.

2. Related Works

Learning representations for 3D shape modeling is an
important research topic that aims at finding the best deep
feature encoding method. For instance, while a group of
works leverage feature embedding for unordered and irreg-
ular point clouds [3, 26, 39, 43, 19] or regular grids of vox-
els [22, 20, 4, 1, 38], another group of works [10, 9, 21] de-
fines convolution kernels and feature embedding techniques
for meshes and manifolds. Other works [6, 17, 12, 31] fo-
cused on learning from high-level 3D shape representations
such as CAD models. These methods either assume that the
CAD models are obtained using CSG or feature-based mod-
eling. In particular, the recovery of the CAD design history
considering these two types of modeling has attracted a lot
of attention [40, 12, 17, 31, 6].

CSG-based Approaches. Several approaches [31, 27, 8,
41] attempt to infer the design history of CAD models us-
ing CSG representation. For instance, when the input shape
is a 3D point cloud, [6] and [41] convert it to the CSG tree
(mainly binary-tree) of solid bodies which is a volumet-
ric representation of simple geometrical primitives. Sim-
ilarly, when the input is a B-Rep or a solid body, [30]
and [27] describe unique CSG conversion steps (or vice-
versa in [8]). The conversion reveals hierarchical steps
involved in modeling solid bodies, whereas CAD models
appear more as connected surface patches than volumetric
solids [28]. Therefore, predicting CSG construction history
may not reveal the actual CAD construction steps used in
modern CAD workflows [44]. The latter mostly consider
B-Reps instead of CSG and rely on feature-based model-
ing, which is addressed in our work.

Feature-based Approaches. The methods that either di-
rectly learn the B-Rep structure of a CAD model [12, 17,
11, 44, 5] or predict sketches and CAD operations [42, 25,
29, 7], are closely related to our work. The works in [25, 7]
propose generative models for CAD sketches with a fo-
cus on the constraints of sketch entities. Therefore, they
do not consider the connection between constrained CAD
sketches and operations. On the other hand, methods like
SolidGen [11], BRepNet [17], UV-Net [12], CADNet [5]
put more emphasis on how to use the B-Rep data structure
to obtain face embeddings followed by face segmentation,
but obscuring the relation between the segmented faces and
design steps. DeepCAD [42], Fusion360 [40] and Zone-
graph [44] are the first set of methods, to the best of our
knowledge, that relate parametric sketches and CAD opera-
tions proposing a generative model for CAD design. How-



ever, their models were restricted to only one type of CAD
operations, namely extrusion. Finally, Point2Cyl [37] oper-
ates on point clouds to detect 2D sketches but is also limited
to the CAD extrusion operation.

CAD Modeling Datasets. Besides Fusion360 [40], there
are no datasets that provide both B-Reps and fully ex-
plicit construction history in standard format. For exam-
ple, the ABC dataset [14] provides 1M+ CAD models
with sparse construction history provided in Onshape pro-
prietary format [40]. On the other hand, the SketchGraphs
dataset [29] contains a large number of sketch construction
sequences but not the B-Reps. Both MFCAD [23] and MF-
CAD++ [5] datasets contain B-Reps and machining feature
labels. However, the samples are synthetic models and too
simple to consider for industrial modeling tasks. CC3D
dataset [4] offers 50k+ pairs of industrial CAD models as
triangular meshes and their corresponding 3D scans, but
without construction steps and B-Reps.

3. Problem Statement
A B-Rep B can be defined as a tuple of three sets of

entities – i.e., a set of Nf faces {f1, f2, . . . , fNf
}, a set

of Ne edges {e1, e2, . . . , eNe
}, and a set of Nc co-edges

(also known as directed half-edges) {c1, c2, . . . , cNc}. Our
main goal is to relate each face f in B with its construction
history using three different types of features F ∈ RNf×df ,
E ∈ RNe×de , and C ∈ RNc×dc extracted for the three enti-
ties, namely, faces, edges, and co-edges, respectively1.
The CAD construction history is defined as a sequential
combination of sketches followed by some CAD operations.
In this work, we are interested in learning (1) the type of
CAD operations through the segmentation of each face that
allowed for its creation, and (2) the CAD operation step to
which the segmented face belongs. Both are detailed below.

3.1. CAD Operation Types

The choice of CAD operation types is crucial for con-
structing CAD models. For notation simplicity, let us de-
note them as op.types. The geometry of the final CAD
model, usually stored as a B-Rep, is obtained through these
operations, which makes each face of the B-Rep directly re-
lated to a type of operation. In Figure 1c, we show some
intermediate steps of CAD construction and how the faces
of the corresponding B-Rep are obtained using different
op.types. For example, the B-Rep of a cube that was ob-
tained by sketching a 2D square and applying an extrusion
operation, as in Figure 1a, would result in two faces with
‘extrude end’ labels and four faces with ‘extrude side’ la-
bels. The ability to automatically infer the op.type that al-
lowed for the creation of each face of the B-Rep constitutes
a first, yet essential, step towards relating the geometry of

1The considered features are described in Section 6.1.

the CAD model to its construction history. Recently intro-
duced models [17, 12] proposed to learn the segmentation
of B-Rep faces into op.types.
Formally, let us consider a B-Rep B labelled with the per-
face op.types T = [t1; t2; . . . ; tNf

] ∈ {0, 1}Nf×kt ,
where kt is the number of possible op.types. Here,
T ∈ {0, 1}Nf×kt is an Nf × kt matrix with binary en-
tries, where each row tj ∈ {0, 1}kt can have only one ele-
ment as 1 representing the op.type of the face fj . The task
of op.type segmentation consists of learning a mapping Φ,
such that,

Φ : RNf×df × RNe×de × RNc×dc → {0, 1}Nf×kt ,

Φ(F,E,C) = T .

It is important to highlight that the segmentation task of
op.types uses the features of faces, edges and co-edges, but
assigns a unique op.type, among a fixed number of possible
types, to each face of the B-Rep. Despite its usefulness for
reconstructing the CAD construction history of B-Reps, the
segmentation into op.types is not sufficient as it does not
describe the relationship between the faces nor the steps of
the construction.

3.2. CAD Operation Steps

In addition to the operation types that are assigned to the
faces of the B-Reps, our aim is to relate them further to
the construction history. Accordingly, we propose a novel
task consisting of segmenting the faces of B-Reps into CAD
operation steps. For notation simplicity, they will be de-
noted as op.steps in what follows. While the segmenta-
tion into op.types aims at identifying the operation that was
used to create each face, the purpose of the segmentation
into op.steps is to group faces that were created at the same
time step. An example of this segmentation is shown in Fig-
ure 1b.
Formally, let us consider a B-Rep B labelled with the per-
face op.steps S ∈ {0, 1}Nf×ks , where ks denotes the
number of op.steps in B. Similarly to the op.types T,
the op.steps are represented by an Nf × ks binary matrix
S = [s1; s2; . . . ; sNf

] ∈ {0, 1}Nf×ks . Each row of this
matrix, sj ∈ {0, 1}ks , can have only one element equal to 1
denoting the op.step for the face fj . Segmenting the faces of
B-Reps into op.steps, would require learning a mapping Ψ,

Ψ : RNf×df × RNe×de × RNc×dc → {0, 1}Nf×ks ,

Ψ(F,E,C) = S .

The proposed segmentation into op.steps is a challeng-
ing task for two main reasons: (1) unlike the op.type seg-
mentation where the possible types are predefined, the la-
bels of op.steps S are arbitrary and any combination of la-
bels, in which faces belonging to the same step have iden-
tical labels, can be considered as correct; (2) predicting



Figure 2: The CADOps-Net joint learning network architecture. The input B-Rep, B, is first passed through a BrepNet
backbone, ∆, to obtain face embeddings, F∆. These embeddings are then fed to an MLP layer, σ, to predict the face
op.step segmentation, Ŝ. Using these predictions, the face embeddings, F∆, are aggregated with a function A into step
embeddings, SA. Finally the concatenation, ⊕, of the face embeddings, F∆, and their corresponding step embeddings, SA,
are passed through an MLP layer, ρ to predict the op.type face labels.

op.steps aims at grouping B-Rep faces according to the de-
sign history. Therefore, it requires learning the relationship
between the different faces of the B-Rep in addition to its
geometry and topology.

4. Proposed CADOps-Net
The proposed CADOps-Net jointly learns the op.type and

op.step segmentation within the same model. In prac-
tice, the mappings Ψ and Φ, introduced in Section 3,
are learnt using an end-to-end neural network. BRep-
Net [17] is used as the backbone of our model, as it has
been shown to effectively operate on B-Reps. BRepNet
uses the face, edge, and co-edge features (F,E,C) of a
B-Rep B to learn per-face embeddings using a succession
of convolutions defined through specific topological walks
and Multilayer Perceptron (MLP) layers. For more de-
tails about this backbone, readers are referred to [17]. In
what follows, the BRepNet backbone will be denoted by
∆ : RNf×df × RNe×de × RNc×dc → RNf×demb

and f∆ will be used as a notation for the embedding ex-
tracted using this backbone from a face f of a B-Rep B.
The proposed network is composed of two modules that are
described below.

4.1. CAD Operation Step Segmentation

The CAD operation step module has two roles. Firstly,
it predicts the per-face op.step labels. Secondly, it is used
to aggregate the embeddings of faces belonging to the same
step and produce embeddings for each group of faces ob-
tained in a single op.step.

Learning CAD operation steps: The mapping Ψ intro-
duced in Section 3.2 consists of two components, i.e.,
Ψ := σ ◦ ∆, where ∆ uses the features of
the B-Rep (F,E,C) and extracts per-face embeddings
F∆ = [f∆1 ; f∆2 ; . . . ; f∆Nf

] ∈ RNf×demb , and

an MLP followed by softmax and maps the face em-
beddings F∆ into probabilities to belong to predicted
op.steps Ŝ = [̂s1; ŝ2; . . . ; ŝNf

] ∈ [0, 1]
Nf×ks . Here,

each face fj would have a vector ŝj ∈ [0, 1]ks specifying
its membership probabilities to the ks op.steps. It is impor-
tant to note that the number of op.steps in a CAD model is
not known in advance. We assume the maximum number of
steps, ks, in a B-Rep B to be the largest number of possible
steps per model computed on the training dataset.

As mentioned in Section 3.2, a particular challenge for
predicting the op.steps is that the ground truth labels S are
arbitrary. Therefore, the task consists of predicting the com-
bination of steps that matches the ground truth labels. In-
spired by [18, 37], we use a Hungarian matching [16] to
find the best one-to-one correspondences between the pre-
dicted op.steps Ŝ and ground truth labels S. Even though
the Hungarian matching is not differentiable, it is only
used to find the correspondences in the training phase, al-
lowing for the computation of a Relaxed Intersection over
Union (RIoU) [15] metric between pairs of predictions ŝ
and ground truth s as follows,

RIoU(s, ŝ) =
sTŝ

||s||1 + ||̂s||1 − sTŝ
, (1)

where ||.||1 denotes the ℓ1 norm, and T the vector trans-
pose. The RIoU metric is further used to define the follow-
ing op.step loss function,

Lstep =
1

Nf

Nf∑
j=1

(1− RIoU(sj , ŝj)) . (2)

For inference, the Hungarian matching is not used and the
predicted op.steps are given by taking the maximum proba-
bility over each ŝ.



CAD operation step embedding: In addition to predicting
the per-face op.steps given a B-Rep, the same module is
used to extract CAD step embeddings {sA1 , sA2 , . . . , sAks

}.
This is achieved by aggregating the embeddings of faces
predicted to belong to the same op.step. Specifically, each
op.step φ would have an embedding sAφ ∈ Rdemb , such that

sAφ = A
j=argmax Ŝ:,φ

f∆j , (3)

where Ŝ:,φ denotes the per-face predicted op.step labels for
φ, and A is an aggregation function that preserves the di-
mension of the input embeddings such as average or maxi-
mum. Finally, each face of the B-Rep will have the corre-
sponding op.step embedding sA according to the predicted
op.step label. These embeddings are finally stacked in a
matrix SA ∈ RNf×demb .

4.2. CAD Operation Type Segmentation

The introduced mapping Φ to obtain the op.type seg-
mentation from an input B-Rep shares the same BRep-
Net backbone ∆ used by the module of op.type seg-
mentation. Moreover, it uses two other mappings, γ
and ρ, where Φ := ρ ◦ γ ◦ ∆. The mapping
γ : RNf×demb × RNf×demb → RNf×2demb takes as
input the face embeddings F∆ and outputs their concate-
nation with the corresponding step embeddings SA. These
concatenated embeddings are fed to an MLP with softmax
which are represented by ρ : RNf×2demb → {0, 1}Nf×kt .
The final op.types T̂ can be obtained following,

T̂ = ρ(F∆ ⊕ SA) , (4)

where ⊕ is the column-wise concatenation operation. The
loss function for the op.type segmentation is computed us-
ing the cross-entropy H between the predicted per-face
op.types t̂ and the ground truth labels t,

Ltype =
1

Nf

Nf∑
j=1

H(tj , t̂j) . (5)

The total loss function is the sum of the op.step and
op.type losses,

Ltotal = Lstep + Ltype . (6)

The model jointly learns to predict the per-face op.type and
op.step labels of a CAD model given its B-Rep, with the
op.type being conditioned on the op.step.

5. CC3D-Ops dataset
We introduce the CC3D-Ops dataset that contains

37k+ B-Reps with the corresponding per-face op.type and
op.step annotations. These labels were extracted using the

Figure 3: Boxplot of the number of op.steps per model in
Fusion360 [40] and the proposed CC3D-Ops dataset.

Solidworks API [33]. The B-Reps and their corresponding
annotations constitute an extension of the CC3D dataset [4].
While the Fusion360 dataset [40] contains a similar number
of B-Reps (35k+) with the corresponding op.type labels,
it does not provide op.step labels and it includes relatively
simple CAD models. The proposed CC3D-Ops dataset
comes with more complex models that are closer to real-
world industrial challenges. In Figure 3, we illustrate the
distribution of op.step number per model as a box plot for
both Fusion360 and CC3D-Ops datasets. It can be clearly
observed that the distribution of CC3D-Ops is more skewed
towards a higher number of op.steps than the one of Fu-
sion360. Specifically, ∼48% of the Fusion360 models are
made of only one op.step and ∼80% of them are constructed
by 3 or less op.steps. On the other hand, only ∼20% of the
CC3D-Ops models are built with a single op.step and ∼44%
of them with 3 or less op.steps. Moreover, the maximum
number of op.steps per model, ks, is 59 for Fusion360 and
262 for CC3D-Ops. Finally, the CC3D-Ops dataset intro-
duces three new op.types to the eight present in Fusion360
which consists of, ‘cut revolve side’, ‘cut revolve end’, and
‘others’. More details about the dataset can be found in the
supplementary material.

6. Experiments
6.1. Experimental Setup

Input Features: The input features of CADOps-Net are
face, edge and co-edge features (F,E,C) extracted from
the B-Rep, B. Following [17], the face type (e.g. plane,
cylinder, sphere) and area are encoded in a single vector. 3D
points are further sampled on each face using the UV-grid
of the B-Rep and encoded as described in [12]. These two
features are concatenated and used as face features. The fea-
tures of the B-Rep faces are then concatenated in a row-wise
fashion to form the matrix F. For edge features, a similar
approach is taken by considering the type, convexity, close-
ness, length of the edge as in [17], and encoded sampled 3D
points as done in [12]. The result is concatenated in an edge
feature matrix E. The co-edge features, C, are simple flags
to represent the direction of the corresponding edges [17].

Network Architecture: The input features are passed
through a BRepNet backbone, ∆, with the same parame-
ters as in [17] using the wing-edge kernel. The dimension of
the face embedding, f∆, is demb = 64. These embeddings



are fed to an MLP followed by softmax, σ, to predict the
op.step. The aggregation function used to compute the step
embedding, SA, is the average function. Each op.step em-
bedding sA has the same dimension as f∆. The final face
embedding, f∆ ⊕ sA, are 128-dimensional. Lastly, the
op.type is estimated by passing these embeddings through
an MLP followed by softmax, ρ. In our experiments, the
number of layers of the employed MLPs is 1.

Datasets: CADOps-Net is evaluated on the Fusion360
dataset [40] and the novel CC3D-Ops dataset described in
Section 5. Note that in Fusion360, the op.step annotations
were derived from the op.type annotations as they were im-
plicitly provided. The train, validation, and test sets for
the Fusion360 dataset are the same as in [17]. For the
CC3D-Ops dataset, the splitting ratios are approximately
65%, 15%, and 20% for the train, validation, and test sets.

Training details: The training was conducted for 200
epochs with a batch size of 100 using an NVIDIA RTX
A6000 GPU. Adam optimizer is employed with a learning
rate of 0.001 and beta parameters of 0.9 and 0.99.

Metrics: The performance of the network is evaluated on
op.type and op.step segmentation tasks. To evaluate the
op.type segmentation, we use the same metrics as in [17],
namely, the mean accuracy (mAcc) and the mean Inter-
section over Union (mIoU). Note that we do not consider
the mIoU for evaluating the op.step as the labels represent
membership sets rather than predefined classes. Further-
more, the consistency between the op.type and op.step pre-
dictions is considered. For this purpose, we group the sub-
op.types, such that ‘extrude end’ and ‘extrude side’, into
a single ‘extrude’ op.type. Similar grouping is done for
‘revolve’, ‘cut extrude’, and ‘cut revolve’. We define an
op.step prediction as consistent if all its faces have the same
op.type prediction. To evaluate this consistency, two metrics
are computed: (1) the first one, RC , quantifies the overall
consistency as the ratio of consistent predicted op.steps; (2)
the second one quantifies the amount of consistency of a

model as SC =
∑

i

max(n(t1,si)
,...,n(tkt

,si)
)

nsi
where nsi is the

number of faces with op.step label si and n(tj ,si) the num-
ber of faces with op.type label tj and op.step label si. We
then compute mSC as the average over all the models.

6.2. Results and Discussions

In this Section, we report and discuss the results of
CADOps-Net compared to relevant SOTA works.

Qualitative Evaluation: In Figure 4, we illustrate the pre-
dictions obtained by CADOps-Net on five models from the
CC3D-Ops dataset. More predictions are provided in the
supplementary material. Despite the complexity of some
models, it can be observed that most of the op.type predic-
tions (left panel) were correct except for very few faces. On

Figure 4: Sample predictions on five models from the
CC3D-Ops dataset. (Left): The CAD operation type seg-
mentation. (Right): The CAD operation step segmentation.
For both tasks, the ground truth (GT) is shown in the left,
the prediction (Pred.) in the middle, and the error (Error) in
the right illustrating the correct/incorrect face predictions.

the other hand, the segmentation into op.steps (right panel)
was more challenging for complex models (two last rows)
as the segmentation into op.steps requires the model to learn
the relationship between the faces of the B-Rep according to
the construction history. Such aspect is more challenging to
capture for complex models than the op.types which could
be hypothetically learned from the geometry and topology
of the B-Reps. This hypothesis is further discussed in the
quantitative evaluation.

(a) CAD operation step mAcc (b) CAD operation type mAcc

Figure 5: Mean accuracy (mAcc) of CAD operation type
and step segmentation w.r.t the number of steps per model
on the CC3D-Ops dataset.

Quantitative Evaluation: In Table 1, we report the quan-
titative results of the proposed approach compared to base-
lines. For both tasks, CADOps-Net (Ours w/ JL+) is com-



pared to the same model without the joint learning of
op.steps and op.types (Ours w/o JL−). In the latter, the
op.type and op.step segmentation modules are trained in-
dependently. In the following, we first analyze the results
for the segmentation into op.steps (column 5 of Table 1)
and for the op.type segmentation (columns 3 and 4), then
we discuss the consistency between the two types of pre-
dictions (columns 6 and 7).

Model op.type op.step Consistency

mAcc mIoU mAcc RC mSC

Fu
si

on
36

0 CADNet [5] 88.9 67.9 - - -
UV-Net [12] 92.3 72.4 - - -

BRepNet [17] 94.3 81.4 - - -
Ours w/o JL− 95.5 83.2 80.2 87.1 97.4
Ours w/ JL+ 95.9 84.2 82.5 93.3 98.7

C
C

3D
-O

ps CADNet [5] 57.5 26.9 - - -
BRepNet [17] 71.4 35.9 - - -
Ours w/o JL− 76.0 43.0 48.4 40.7 82.7
Ours w/ JL+ 75.0 44.3 62.7 82.4 96.7

Table 1: Results of the segmentation into CAD operation
types and steps on the Fusion360 and CC3D-Ops datasets.
All results are expressed as percentages. Ours w/o JL− de-
notes our method without joint learning. Ours w/ JL+ refers
to the proposed CADOps-Net with joint learning.

As previously mentioned, predicting op.steps is a much
more challenging task than op.types especially for models
with a large number of op.steps. While the joint learning
leads to small improvements on the op.step mAcc metric on
the Fusion360 dataset, significant improvements can be ob-
served on the CC3D-Ops dataset results with an increase of
∼14%. This difference of results can be explained by the
higher complexity of CC3D-Ops models compared to those
of Fusion360. Figure 5a shows the mAcc of op.step seg-
mentation related to the number of op.steps per model on
the CC3D-Ops dataset. It can be observed that for models
with less than 25 op.steps, representing over 96% of the
CC3D-Ops dataset, CADOps-Net scores consistently and
significantly better than without joint learning. These ob-
servations demonstrate the importance of the joint learning
for op.step segmentation. However, in both cases there is
a major decrease in the op.step segmentation mAcc as the
number of steps per model increases. This is expected since
the task becomes increasingly challenging as the number of
op.steps becomes larger. Note that we did not compare our
results to state-of-the-art (BRepNet [17], UV-Net [12], and
CADNet[5]) on the task of op.step segmentation as their
methods are not designed to predict arbitrary face labels.

In order to evaluate the op.type segmentation of
CADOps-Net, the results are compared to SOTA results.

On the Fusion360 dataset, we recorded slight improvements
over [17], [12], and [5] in terms of mAcc. More signifi-
cant improvements w.r.t [12] and [5] were obtained in terms
of mIoU (more than 12% and 16%, respectively). On the
CC3D-Ops dataset, our results clearly outperformed those
of [17] and [5] on the two metrics. Furthermore, we com-
pare CADOps-Net to the scenario where the joint learning
is omitted. One interesting observation is that there is no
significant difference between the two scenarios. The same
observation holds in Figure 5b where we show the mAcc of
op.type segmentation related to the number of op.steps per
model. In contrast to the op.step segmentation, one can no-
tice that the number of op.steps has a slight impact on the
op.type mAcc. In other words, the op.type segmentation
does not become more challenging when complex models
with large number of construction steps are involved. Intu-
itively, it can be hypothesized that the op.type segmentation
is more related to the geometry and topology of the B-Rep
rather than its construction history.

The results on the consistency scores (RC and mSC)
highlight the relevance of the joint learning approach. De-
spite relatively similar op.type and op.step mAcc scores on
the Fusion360 dataset for Ours w/ JL+ and Ours w/o JL−,
the joint learning approach produces more consistent results
with an increase of ∼6% in RC score. Similarly on the
CC3D-Ops dataset, the predictions from CADOps-Net are
significantly more consistent with an increase of ∼41% in
RC score and 14% in mSC score. Therefore, the joint
learning model is able to extract face features that contain
consistent information for both the op.type and op.step seg-
mentation labels. The consistency property is essential for
the process of reverse engineering.

6.3. Ablation Study

op.type op.step
Agg. type mAcc mIoU mAcc

C
C

3D
-O

ps

No agg. 73.0 40.2 61.5
Soft labels 73.4 40.0 59.7

Sum 70.4 34.4 62.6
Max 74.3 42.0 62.2
Avg 75.0 44.3 62.7

Table 2: Ablation study on the aggregation function used in
the joint learning of CADOps-Net. All results are expressed
as percentages.

In order to provide a deeper insight into the joint learning
approach, we conduct an ablation study on the aggregation
function A of the face embeddings. Experiments are con-
ducted with the following five scenarios: (1) the output face
embeddings, f∆, from the BRepNet backbone are directly
used to predict both the op.type and op.step without any ag-
gregation (No agg.). (2) Another scenario concatenates the



Figure 6: Sketch recovery from predicted CAD operation
types (op.types) and steps (op.steps). op.step 1 and 2 are
colored in yellow and blue, respectively. Figure 4 defines
the color codes used for different op.types.

BRepNet face embeddings with the predicted soft labels of
the op.step (Soft labels) again without any aggregation. (3)
The last three scenarios focus on the type of aggregation
function used to obtain the op.step embeddings, SA, namely
the maximum (Max), the average (Avg), and the sum of the
embeddings combined with a softmax normalization (Sum).
Table 2 shows the ablation results for both op.type and
op.step segmentation tasks on the CC3D-Ops dataset. The
results show that aggregating the face embeddings using an
Avg pooling leads to slightly better overall performance.

6.4. CAD Sketch Recovery

Figure 6 illustrates preliminary results on how
CADOps-Net predictions can be used to retrieve the
CAD sketches. A sketch Q of a B-Rep B can be defined as
a set of simple geometrical entities (e.g. straight lines, arcs).
We consider a small subset of 20 models made of extrusions
from the Fusion360 dataset. In the following, we describe
the process for recovering the sketch corresponding to
op.step 2 using the CADOps-Net predictions shown in Fig-
ure 6a. We first identify the faces for which the op.type was
predicted as ‘extrude side’. Second, we cluster these faces
according to their predicted op.step. Third, we store the
face-normals (n̂2

1, . . . , n̂
2
m) and sample UV-grid points on

the faces. This allows to derive a common axis of extrusion
â and a projection center ô. Finally, the predicted sketch
Q̂2 is obtained by projecting the sampled points along â

(more details are in the supplementary material). Figure 6a
and 6b show qualitative results of successful and failed
sketch recoveries from correctly and incorrectly predicted
op.types. These preliminary results on sketch recovery
illustrate the relevance of op.step prediction in the context
of 3D reverse engineering.

6.5. Limitations

In CAD modeling, different designers may opt for differ-
ent design solutions for the same model. Consequently, the
op.type and op.step segmentation is not necessarily unique.
An example for which the op.step prediction is valid despite
not matching the ground truth can be found in Figure 7a.
The letters were predicted as part of the same op.step, which
could be a valid design approach. However, these letters
were extruded with separate op.steps in the ground truth. In
Figure 7b, an example with valid predictions of op.types not
matching the ground truth is depicted. Here, the hole in the
center of the shape was predicted as created by a ‘cut’ type
operation, while being an ‘extrude side’ in the ground truth.
In general, CAD designers follow good practices so that the
final model reflects the design intent [24]. However, differ-
ent designers might have their own set of good practices,
making it difficult for a learning-based model to capture all
the different design intents.

Figure 7: Failure cases of CADOps-Net for op.step segmen-
tation in (a) and op.type segmentation in (b).

7. Conclusion

In this work, we have presented CADOps-Net, a neu-
ral network that jointly learns the CAD operation type and
step segmentation of B-Rep faces. We showed that the
joint learning strategy leads to significantly better results for
the challenging task of CAD operation step segmentation,
while achieving state-of-the-art results on the CAD opera-
tion type segmentation task. Moreover, we showed the po-
tential of combining these two segmentations for recovering
further useful information of the construction history such
as sketches. Finally, we introduced the CC3D-Ops dataset
and its operation type and step annotations. We believe that
this dataset will help in further advancing research on CAD
modeling thanks to the complexity of the CAD models it
provides. As future work, we plan to investigate the or-
dering of the construction steps while maintaining various
types of CAD operations. This would allow for the recovery
of a more complete construction history.
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